High complexity and tight time-to-market have created new challenges in Multiprocessor System-on-Chip (MPSoC) designs. Virtual platforms play an important role in this scenario, by enabling design space exploration, functional verification, and IP reuse. Processors are key components on such virtual platforms, where Architecture Description Languages are usually applied to automatically generate simulators and other software tools. This paper focuses on the software verification path and its main contribution is a trace matching methodology, capable of matching traces for different architectures providing a good feedback about the correct execution of a program. We evaluated our methodology and tool using ArchC-generated instruction-set simulators (ISS) for two different processors: MIPS and PowerPC, and compared all 75 programs from acStone benchmark, 3 synthetic errors injected in the programs and in the simulator, and 10 programs with 15 variations from MiBench that matched correctly.