This paper examines the problem of code-generation for Digital Signal Processors (DSPs). We make two major contributions. First, for an important class of DSP architectures, we propose an optimal $O(n)$ algorithm for the tasks of register allocation and instruction scheduling for expression trees. Optimality is guaranteed by sufficient conditions derived from a structural representation of the processor Instruction Set Architecture (ISA). Second, we develop heuristics for the case when basic blocks are Directed Acyclic Graphs (DAGs).