Recent work in reconfigurable computing research has shown that a substantial performance speedup can be achieved through architectures that map the most relevant application inner-loops to a reconfigurable datapath. Any solution to this problem must be able to synthesize a datapath for each loop and to merge them together into a single reconfigurable datapath. The main contribution of this paper is a novel graph-based technique for the datapath merge problem. This approach is based on the solution of a maximum clique problem that merges datapaths one at a time. A set of experiments, using the MediaBench benchmark, shows that the proposed technique produces 24% fewer datapath interconnections than a previous solution to this problem.